Eros Pasero Politecnico of Turin Italy Email 2021 2026 Talk(s): Medicine 4.0: AI and IOT, the new revolution Medicine 4.0: AI and IOT, the new revolution × Industry 4.0 is considered the great revolution of the past few years. New technologies, the Internet of things, the possibility to monitor everything from everywhere changed both plants and the approaches to the industrial production. Medicine is considered a slowly changing discipline. The human body model is a difficult concept to develop. But we can identify some passages in which medicine can be compared to industry. Four major changes revolutionized medicine: Medicine 1.0: James Watson and Francis Crick described the structure of DNA. This was the beginning of research in the field of molecular and cellular biology Medicine 2.0: Sequencing the Human genome. This discovery made it possible to find the origin of the diseases. Medicine 3.0: The convergence of biology and engineering. Now the biologist’s experience can be combined with the technology of the engineers. New approaches to new forms of analysis can be used. Medicine 4.0: Digitalization of Medicine: IOT devices and techniques, AI to perform analyses, Machine Learning for diagnoses, Brain Computer Interface, Smart wearable sensors. Medicine 4.0 is definitely a great revolution in the patient care. New horizons are possible today. Covid 19 has highlighted problems that have existed for a long time. Relocation of services, which means remote monitoring, remote diagnoses without direct contact between the doctor and the patient. Hospitals are freed from routine tests that could be performed by patients at home and reported by doctors on the internet. Potential dangerous conditions can be prevented. During the Covid emergency everybody can check his condition and ask for a medical visit (swab) only when really necessary. This is true telemedicine. This is not a whatsapp where an elder tries to chat with a doctor. This is a smart device able to measure objective vital parameters and send to a health care center. Of course Medicine 4.0 requires new technologies for smart sensors. These devices need to be very easy to use, fast, reliable and low cost. They must be accepted by both people and doctors. In this talk we’ll see together the meaning of telemedicine and E-Health. E-health is the key to allowing people to self monitor their vital signals. Some devices already exist but a new approach will allow to everybody (especially older people with cognitive difficulties) to use these systems with a friendly approach. Telemedicine will be the new approach to the concept of hospital. A virtual hospital, without any physical contact but with an objective measurement of every parameter. A final remote discussion between the doctor and the patient is still required to feel comfortable. But the doctor will have all the vital signal recorded to allow him to make a diagnosis based on reliable data. Another important aspect of medicine 4.0 is the possibility of using AI both to perform parameter measurement and to manage the monitoring of multiple patients. The new image processing based on Artificial Neural Networks allows doctors to have a better and faster analysis. But AI algorithms are also able to manage intensive care rooms with several patients reducing the number of doctors involved in the global monitoring of the situation. E-Health and Artificial Intelligence. The new paradigm of Medicine 4.0 E-Health and Artificial Intelligence. The new paradigm of Medicine 4.0 × Medicine today has the availability of advanced technologies and new devices for diagnosis. Telemedicine gives a new scenario that allows remote diagnosis, control and treatment of patients at home without physical contact with the doctor. Routine checkups can be outsourced to small care facilities or even to the patient's own home. In Europe the elderly are more than the young but the funds for the health system are decreasing. The medicine paradigm must be rethought. E-Health can be the solution to support for the delocalization of some medical services: new micro and nano electronic circuits, IOT for pervasive and efficient communication, Artificial Intelligence to solve problems where models are not easy to apply but a lot of data is available. The ability to combine the power of AI algorithms and data from different sensors and databases can greatly increase the reliability of the final choice of the right therapy. This is the new Medicine 4.0. The digitalization of the processes and the improvement of technology allow interfacing the human body with computers and Artificial Intelligence allows you to work with a large amount of data (big data) and identify unknown correlations between the parameters to allow a new diagnosis. Several new perspectives will be discussed in this presentation. Telemedicine: Difficult, diverse and vast geographical areas are important factors for poor access to healthcare systems. Even in wealthy countries people have to travel up to 100 km to reach a health facility. A smartphone, wearable devices, smart sensors can solve this problem without any transfer. Technology does not replace a doctor but is an answer for an objective need that the patient can directly request. The de-localization of the medical services is the answer to this problem. E-Health: correct and rapid measurement can be crucial in many cases. ECG showing heart disease (e.g. atrial fibrillation) can be a life-saving indication. Electronic Health Record (HER): the ability to store and share medical data between the Physician located, for example in New York, a specialist in Chicago and the patient on vacation in Mexico is a new reality. Great advantages but also great challenges to find what information to store in order not to have big unnecessary records. Artificial Intelligence: these algorithms can be used for advanced diagnostic systems. In a hospital intensive care unit, for example, a patient is connected to advanced medical equipment that can measure many parameters giving beeps and rings when they are outside the normal parameters. Too many parameters for a single therapist and too many patients for a team. All this information can be managed by AI systems that can keep the patient in optimal condition. Artificial Intelligence models: Mathematical models of human parameters are often not usable but data measured under disease conditions are often available. AI systems can use these data to predict other parameters without using models. We’ll see how ECG and PPG can give blood pressure with better precision than a sphygmomanometer using an Artificial Neural Network. We will investigate both new technologies showing wearable devices that can be used both to monitor patients at home (this topic was very important with the Covid 19) and Artificial Intelligence applied to medical image processing to perform remote diagnoses (once again used to distinguish pneumonia from lung problems due to Covid 19). After this difficult period Medicine 4.0 will change several aspects of the interface between doctors and patients by improving the performance of national health services and reducing unnecessary costs. The future will provide a new digital hospital and a comprehensive monitoring system that integrates the interface between patients and hospitals.