Distinguished Lecturer Program The I&M Society Distinguished Lecturer Program (DLP) is one of the most exciting programs offered to our chapters, I&M members, and IEEE members. It provides I&M chapters around the world with talks by experts on topics of interest and importance to the I&M community. It, along with our conferences and publications, is the way we use to disseminate knowledge in the I&M field. Our lecturers are among the most qualified experts in their own field, and we offer our members a first-hand chance to interact with these experts during their lectures. The I&M Society aids chapters financially so that they might use this program. All Distinguished Lecturers are outstanding in their fields of specialty. Collectively, the Distinguished Lecturers possess a broad range of expertise within the area of I&M. Thus, Chapters are encouraged to use this program as a means to make their local I&M community aware of the most recent scientific and technological trends and to enhance their member benefits. Although lectures are mainly organized to benefit existing members and Chapters, they can also be effective in generating membership and encouraging new Chapter formation. Interested parties are encouraged to contact the I&M DLP Chair regarding this type of activity. DLP Chair Kristen Donnell Missouri University of Science & Technology United States Email 2022 Call for DL Applications Applications for new I&M Society Distinguished Lecturers for the Distinguished Lecturer Program are currently being accepted. 2022 IMS Distinguished Lecturer Applications are due on May 6, 2022. View the 2022 Call Looking for a DL topic not covered by our current DL’s? Suggest a topic or find a DL who may be able to adapt his or her topic for your event by reaching out to the DLP Chair. Contact the DLP Chair Virtual Distinguished Lecturer Webinar Series COVID-19 has required all of us to adapt personally and professionally, and the I&M Society is no exception. To this end, in order to remain connected to our I&M colleagues and friends, the I&M Society hosted two Virtual Distinguished Lecturer Webinar series. Recordings are available at the link below! View Virtual DL Webinars Current Distinguished Lecturers Mathias Bonmarin Distinguished Lecturer 2022 - 2024 Talk(s) Dynamic Thermal Imaging – A Valuable Measurement Method for Biomedical Applications Dynamic Thermal Imaging – A Valuable Measurement Method for Biomedical Applications × Thermal imaging, or thermography, consists in measuring and imaging the thermal radiation emitted by every object above the absolute zero temperature. As this radiation is temperature-dependent, the infrared images recorded can be converted into temperature maps, or thermograms, allowing retrieving valuable information about the object under investigation. Thermal imaging has been known since the middle of the 20th century and recent technological achievements concerning the infrared imaging devices, together with the development of new procedures based on transient thermal emission measurements revolutionized the field. Nowadays, thermography is a method whose advantages are undisputed in engineering. It is routinely used for the non-destructive testing of materials, to investigate electronic components, or in the photovoltaic industry to detect defects in solar cells. Despite an early interest, thermal imaging is currently rarely used for biomedical applications and even less in clinical settings. One reason is probably the initial disappointing results obtained solely with static measurement procedures, where the sample is investigated in its steady state, and using unhandy and performance-limited first-generation infrared cameras. In addition, the retrieval of quantitative data using dynamic thermal imaging procedures often requires complex mathematical modelling of the sample which can be demanding in biomedical applications due to the large variability intrinsic to life science field. The goal of this lecture is to a) demonstrate the potential of dynamic thermal imaging for biomedical applications and b) give the reader the necessary background to successfully translate the technology to his/her specific biomedical applications. In a first step, the basics of thermal radiation and thermal imaging device technology will be reviewed. Rather than giving an exhaustive description of the technology, we aim to familiarize the reader with key concepts that will allow selecting an optimal infrared camera depending on the specific application. In a subsequent part, we will present the foundation of thermodynamics needed to understand and be able to mathematically model heat transfer processes happening inside the sample under investigation and between the sample and its environment. Such thermal exchanges are responsible for the sample surface temperature. As next steps, we will present in detailed and compare the different procedures used in dynamic thermal imaging. Dynamic thermal imaging means that the sample surface thermal emission is monitored in its transient state and exhibit superior capabilities compared to passive thermal imaging. The thermal stimulation can be achieved with different modalities depending on the sample under investigation (LASER or flash lamps to investigate thin coatings, alternating magnetic fields to detect magnetic material, microwave to heat up water, or ultrasound to monitor cracks). Various procedures are possible: stepped- and pulsed-thermal imaging, pulsed-phase and lock-in thermal imaging. Each approach exhibiting specific characteristics in term of signal to noise ratio or measurement duration. As an illustration, we will demonstrate how lock-in thermal imaging can be advantageously used to build extremely sensitive instruments to detect and characterize stimuli-responsive nanoparticles (both plasmonic and magnetic) in complex environments like cell cultures, tissue or food. In this example, we will present the research instrument in detail with the choice of the various components, the digital lock-in demodulation implemented, the mathematical modelling of the sample required to extract quantitative information as well as the resulting setup performances. The goal being to allow the reader to translate the dynamic thermal imaging measurement principles to its own biomedical application. Olfa Kanoun Distinguished Lecturer 2022 - 2024 Talk(s) Impedance Spectroscopy for Measurement and Sensor Solutions Impedance Spectroscopy for Measurement and Sensor Solutions × Impedance Spectroscopy is a measurement method used in many fields of science and technology including chemistry, medicine, and material sciences. The possibility to measure the complex impedance over a wide frequency range involves interesting opportunities for separating different physical effects, accurate measurements, and measurements of non-accessible quantities. Especially by sensors, a multifunctional measurement can be realized so that more than one quantity can be measured at the same time and the measurement accuracy and reliability can be significantly improved. In order to realize impedance spectroscopy-based solutions, several aspects should be carefully addressed such as measurement procedures, modelling and signal processing, parameter extraction. Development of suitable impedance models and extraction of target information by optimization techniques is one of the most used approaches for calculation of target quantities. Different presentations can be provided to specific topics to show the chances of application of this method in the fields of battery diagnosis, bioimpedance, sensors, and material sciences. The aim is to attract scientists to be able to apply impedance spectroscopy in different fields of instrumentation and measurement in an adequate way. Yang Liu Distinguished Lecturer 2022 - 2024 Talk(s) Optical imaging, Computer Vision and Augmented Reality for Medical Applications Optical imaging, Computer Vision and Augmented Reality for Medical Applications × Optical Instrumentation, computer vision, and augmented reality are powerful platform technologies. In this lecture, we will discuss how these technologies can be used for medical applications. I will give an overview of the technologies and current challenges relevant to medical and surgical settings. The recent advances in image acquisition, computer vision, photonics, and instrumentation present the scientific community with the opportunity to develop new systems to impact healthcare. Leveraging an integrated design, advantages of hardware and software approach can be combined, and shortcomings can be complemented. I will present new approaches of fluorescence imaging for surgical applications. We will discuss hardware instrumentation, algorithm development, and system deployment. New development in multimodal imaging and image registration will also be discussed. For example, a combination of real-time intraoperative optical imaging and CT-based surgical navigation represents a promising approach for clinical decision support. Integration of 3D imaging and augmented reality provides surgeons with an intuitive way to visualize surgical data. In addition to technological development, I will discuss the clinical translation of systems and cross-disciplinary collaboration. Interdisciplinary approaches to solving complex problems in surgically relevant settings will be described. Eros Pasero Distinguished Lecturer 2021 - 2023 Talk(s) Medicine 4.0: AI and IOT, the new revolution Medicine 4.0: AI and IOT, the new revolution × Industry 4.0 is considered the great revolution of the past few years. New technologies, the Internet of things, the possibility to monitor everything from everywhere changed both plants and the approaches to the industrial production. Medicine is considered a slowly changing discipline. The human body model is a difficult concept to develop. But we can identify some passages in which medicine can be compared to industry. Four major changes revolutionized medicine: Medicine 1.0: James Watson and Francis Crick described the structure of DNA. This was the beginning of research in the field of molecular and cellular biology Medicine 2.0: Sequencing the Human genome. This discovery made it possible to find the origin of the diseases. Medicine 3.0: The convergence of biology and engineering. Now the biologist’s experience can be combined with the technology of the engineers. New approaches to new forms of analysis can be used. Medicine 4.0: Digitalization of Medicine: IOT devices and techniques, AI to perform analyses, Machine Learning for diagnoses, Brain Computer Interface, Smart wearable sensors. Medicine 4.0 is definitely a great revolution in the patient care. New horizons are possible today. Covid 19 has highlighted problems that have existed for a long time. Relocation of services, which means remote monitoring, remote diagnoses without direct contact between the doctor and the patient. Hospitals are freed from routine tests that could be performed by patients at home and reported by doctors on the internet. Potential dangerous conditions can be prevented. During the Covid emergency everybody can check his condition and ask for a medical visit (swab) only when really necessary. This is true telemedicine. This is not a whatsapp where an elder tries to chat with a doctor. This is a smart device able to measure objective vital parameters and send to a health care center. Of course Medicine 4.0 requires new technologies for smart sensors. These devices need to be very easy to use, fast, reliable and low cost. They must be accepted by both people and doctors. In this talk we’ll see together the meaning of telemedicine and E-Health. E-health is the key to allowing people to self monitor their vital signals. Some devices already exist but a new approach will allow to everybody (especially older people with cognitive difficulties) to use these systems with a friendly approach. Telemedicine will be the new approach to the concept of hospital. A virtual hospital, without any physical contact but with an objective measurement of every parameter. A final remote discussion between the doctor and the patient is still required to feel comfortable. But the doctor will have all the vital signal recorded to allow him to make a diagnosis based on reliable data. Another important aspect of medicine 4.0 is the possibility of using AI both to perform parameter measurement and to manage the monitoring of multiple patients. The new image processing based on Artificial Neural Networks allows doctors to have a better and faster analysis. But AI algorithms are also able to manage intensive care rooms with several patients reducing the number of doctors involved in the global monitoring of the situation. Daniel Watzenig Distinguished Lecturer 2021 - 2023 Talk(s) Introduction to Autonomous Vehicles Introduction to Autonomous Vehicles × • A basic introduction to the sense-plan-act challenges of autonomous vehicles • Introduction to the most common state-of-the-art sensors used in autonomous driving (radar, camera, lidar, GPS, odometry, vehicle-2-x) in terms of benefits and disadvantages along with mathematical models of these sensors Autonomous driving is seen as one of the pivotal technologies that considerably will shape our society and will influence future transportation modes and quality of life, altering the face of mobility as we experience it by today. Many benefits are expected ranging from reduced accidents, optimized traffic, improved comfort, social inclusion, lower emissions, and better road utilization due to efficient integration of private and public transport. Autonomous driving is a highly complex sensing and control problem. State-of-the-art vehicles include many different compositions of sensors including radar, cameras, and lidar. Each sensor provides specific information about the environment at varying levels and has an inherent uncertainty and accuracy measure. Sensors are the key to the perception of the outside world in an autonomous driving system and whose cooperation performance directly determines the safety of such vehicles. The ability of one isolated sensor to provide accurate reliable data of its environment is extremely limited as the environment is usually not very well defined. Beyond the sensors needed for perception, the control system needs some basic measure of its position in space and its surrounding reality. Real-time capable sensor processing techniques used to integrate this information have to manage the propagation of their inaccuracies, fuse information to reduce the uncertainties and, ultimately, offer levels of confidence in the produced representations that can be then used for safe navigation decisions and actions. Multi-Sensor Perception and Data Fusion Multi-Sensor Perception and Data Fusion × • Overview of different sensor data fusion taxonomies as well as different ways to model the environment (dynamic object tracking vs. occupancy grid) in the Bayesian framework including uncertainty quantification • Exploiting potential problems of sensor data fusion, e.g. data association, outlier treatment, anomalies, bias, correlation, or out-of-sequence measurements • Propagation of uncertainties from object recognition to decision making based on selected examples, e.g. the real-time vehicle pose estimation based on uncertain measurements of different sources (GPS, odometry, lidar) including the discussion of fault detection and localization (sensor drift, breakdown, outliers etc.) Sensor fusion overcomes the drawbacks of current sensor technology by combining information from many independent sources of limited accuracy and reliability. This makes the system less vulnerable to random and systematic failures of a single component. Multi-source information fusion avoids the perceptual limitations and uncertainties of a single sensor and forms a more comprehensive perception and recognition of the environment including static and dynamic objects. Through sensor fusion we combine readings from different sensors, remove inconsistencies and combine the information into one coherent structure. This kind of processing is a fundamental feature of all animal and human navigation, where multiple information sources such as vision, hearing and balance are combined to determine position and plan a path to a destination. In addition, several readings from the same sensor are combined, making the system less sensitive to noise and anomalous observations. In general, multi-sensor data fusion can achieve an increased classification accuracy of objects, improved state estimation accuracy, improved robustness for instance in adverse weather conditions, an increased availability, and an enlarged field of view. Emerging applications such as autonomous driving systems that are in direct contact and interact with the real world, require reliable and accurate information about their environment in real-time. Yong Yan Distinguished Lecturer 2021 - 2023 Talk(s) Measurement and Monitoring Techniques through Electrostatic Sensing Measurement and Monitoring Techniques through Electrostatic Sensing × Over the past three decades a wide range of electrostatic sensors have been developed and utilized for the continuous monitoring and measurement of various industrial processes. Electrostatic sensors enjoy simplicity in structure, cost-effectiveness and suitability for a variety of process conditions. They either provide unique solutions to some measurement challenges or offer more cost-effective or complementary options to established sensors such as those based on acoustic, capacitive, electromagnetic or optical principles. The established or potential applications of electrostatic sensors appear wide ranging, but the underlining sensing principle and system characteristics are very similar. This presentation will review the recent advances in electrostatic sensors and associated signal processing algorithms for industrial measurement and monitoring applications. The fundamental sensing principle and characteristics of electrostatic sensors will be introduced. A number of practical applications of electrostatic sensors will be presented. These include pulverized fuel flow metering, linear and rotational speed measurement, condition monitoring of mechanical systems, and advanced flame monitoring. Results from recent experimental and modelling studies as well as industrial trials of electrostatic sensors will be reported. Multiphase Flow Measurement and Combustion Process Monitoring through Data Driven Modelling Multiphase Flow Measurement and Combustion Process Monitoring through Data Driven Modelling × Over the past ten years, various machine learning techniques have been incorporated into a range of measurement systems for multiphase flow measurement and combustion process monitoring. Such techniques in conjunction with low-cost sensors and sensor arrays provide either unique solutions to some measurement challenges or offer more cost-effective or complementary options to other possible methods. The established or potential applications of machine learning in measurement and instrumentation appear wide-ranging, but the underlining principle, advantages, and limitations are similar. This presentation will review recent advances in the applications of data-driven modeling techniques to the measurement of gas-liquid, gas-solids, and liquid-solids mixture flows and the advanced monitoring of combustion processes. These include the mass flow rate measurement of air-oil two-phase flow, carbon dioxide two-phase flow, slurry flow, and pneumatically conveyed pulverized fuel in a range of industrial sectors. Meanwhile, systems that incorporate machine learning algorithms for the online continuous identification of pulverized fuel, burner condition monitoring, and combustion plant optimization will be introduced. Results from recent experimental programs and trials on industrial-scale test plants will be reported. Andrew Taberner Distinguished Lecturer 2020 - 2022 Talk(s) A Dynamometer for the Heart A Dynamometer for the Heart × The heart is a complex organic engine that converts chemical energy into work. Each heartbeat begins with an electrically-released pulse of calcium, which triggers force development and cell shortening, at the cost of energy and oxygen, and the dissipation of heat. My group has developed new instrumentation systems to measure all of these processes simultaneously while subjecting isolated samples of heart tissue to realistic contraction patterns that mimic the pressure-volume-time loops experienced by the heart with each beat. These devices are effective 'dynamometers' for the heart, that allow us to measure the performance of the heart and its tissues, much in the same way that you might test the performance of your motor vehicle on a 'dyno.' This demanding undertaking has required us to develop our own actuators, force transducers, heat sensors, and optical measurement systems. Our instruments make use of several different measurement modalities which are integrated in a robotic hardware-based real-time acquisition and control environment and interpreted with the aid of a computational model. In this way, we can now resolve (to within a few nanoWatts) the heat released by living cardiac muscle fibers as they perform work at 37 °C. Muscle force and length are controlled and measured to microNewton and nanometer precision by a laser interferometer, while the muscle is scanned in the view of an optical microscope equipped with a fluorescent calcium imaging system. Concurrently, the changing muscle geometry is monitored in 4D by a custom-built optical coherence tomograph, and the spacing of muscle-proteins is imaged in real-time by transmission-microscopy and laser diffraction systems. Oxygen consumption is measured using fluorescence-quenching techniques. Equipped with these unique capabilities, we have probed the mechano-energetics of failing hearts from rats with diabetes. We have found that the peak stress and peak mechanical efficiency of tissues from these hearts was normal, despite prolonged twitch duration. We have thus shown that the compromised mechanical performance of the diabetic heart arises from a reduced period of diastolic filling and does not reflect either diminished mechanical performance or diminished efficiency of its tissues. In another program of research, we have demonstrated that despite claims to the contrary, dietary supplementation by fish-oils has no effect on heart muscle efficiency. Neither of these insights was fully revealed until the development of this instrument. Optical Sensing in Bioinstrumentation Optical Sensing in Bioinstrumentation × Optical sensors and techniques are used widely in many areas of instrumentation and measurement. Optical sensors are often, conveniently, ‘non-contact’, and thus impose negligible disturbance of the parameter undergoing measurement. Valuable information can be represented and recorded in space, time, and optical wavelength. They can provide exceptionally high spatial and/or temporal resolution, high bandwidth, and range. Moreover, optical sensors can be inexpensive and relatively simple to use. At the Bioinstrumentation Lab at the Auckland Bioengineering Institute, we are particularly interested in developing techniques for measuring parameters from and inside and outside the body. Such measurements help us to quantify physiological performance, detect and treat disease, and develop novel medical and scientific instruments. In making such measurements we often draw upon and develop our own optical sensing and measurement methods – from interferometry, fluorimetry and diffuse light imaging, to area-based and volume-based optical imaging and processing techniques. In this talk, I will overview some of the new interesting optically-based methods that we have recently developed for use in bioengineering applications. These include 1) diffuse optical imaging methods for monitoring the depth of a drug as it is rapidly injected through the skin, without requiring a needle; 2) stretchy soft optical sensors for measuring strains of up to several 100 % during movement; 3) multi-camera image registration techniques for measuring the 3D shape and strain of soft tissues; 4) optical coherence tomography techniques for detecting the 3D shape of deforming muscle tissues, and 5) polarization-sensitive imaging techniques for classifying the optical and mechanical properties of biological membranes. While these techniques sensors and techniques have been motivated by applications in bioengineering, the underlying principles have broad applicability to other areas of instrumentation and measurement. Mihaela Albu Distinguished Lecturer 2017 - 2022 Talk(s) High Reporting Rate Measurements for Smart[er] Grids High Reporting Rate Measurements for Smart[er] Grids × Modern control algorithms in the emerging power systems process information delivered mainly by distributed, synchronized measurement systems, and available in data streams with different reporting rates. Multiple measurement approaches are used: on one side, the existing time-aggregation of measurements are offered by currently deployed IEDs (SCADA framework), including smart meters and other emerging units; on the other side, the high-resolution waveform-based monitoring devices like phasor measurement units (PMUs) use high reporting rates (50 frames per second or higher) and can include fault-recorder functionality. There are several applications where synchronized data received with a high reporting rate has to be used together with aggregated data from measurement equipment having a lower reporting rate (complying with power quality data aggregation standards) and the accompanying question is how adequate are the energy transfer models in such cases. For example, state estimators need both types of measurements: the so-called “classical” one, adapted for a de facto steady-state paradigm of relevant quantities, and the “modern” one, i.e. with fewer embedded assumptions on the variability of same quantities. Another example is given by emerging active distribution grids operation, which assumes higher variability of the energy transfer and consequently, a new model approximation for its characteristic quantities (voltages, currents) is needed. Such a model is required not only in order to be able to correctly design future measurement systems but also for better assessing the quality of existing “classical” measurements, still in use for power quality improvement, voltage control, frequency control, network parameters’ estimation, etc. The main constraint so far is put by the existing standards where several aggregation algorithms are recommended, with a specific focus on the information compression. The further processing of RMS values (already the output of a filtering algorithm) results in significant signal distortion. Presently there is a gap between (i) the level of approximation used for modeling the current and voltage waveforms which are implicitly assumed by most of the measurement devices deployed in power systems and (ii) the capabilities and functionalities exhibited by the high fidelity, high accuracy and a high number of potential reporting rates of the newly deployed synchronized measurement units. The talk will address: o The measurement paradigm in power systems; System inertia, real-time and steady-state Instrument transformers; limited knowledge on the infrastructure PQ, SCADA, and PMUs Power system state estimation; WAMCS IEDs, PMUs, microPMUs Time-stamped versus synchronized measurements o Measurement channel quality and models for energy transfer Voltage and frequency variability; rate of change of frequency The steady-state signal and rapid voltage changes (RVC); RMS-values reported with 100 frames/s; Measurement data aggregation; filtering properties Time- aggregation algorithms in the PQ framework Statistical approaches; o Applications and challenges Communication channel requirements; delay assessment in WAMCS Smart metering with high reporting rate (1s) The presentation provides an overview of these techniques, with examples from worldwide measurement solutions for smart grids deployment. DL Toolbox Our Distinguished Lecturer Toolbox contains essential resources such as guidelines, forms, and process documents. DL Toolbox Past Lecturers Our complete Distinguished Lecturer List contains past and current DLs and their talk titles. View Complete DL List DL Reports Please review the DL reports and take a peek at the pictures by sending a request to the DLP Chair.