IEEE.org | IEEE Xplore Digital Library | IEEE Standards | IEEE Spectrum | More Sites
Sat, December 5, 2020
Semiconductor chip manufacturing cost consists of die cost, package cost, and test cost. The trends of increasing design complexity, increasing quality needs, and new process nodes and defect models are pushing test cost to the forefront. This is especially true for high-resolution data converters, whose accurate testing requires expensive instruments and is extremely time-consuming. As a result, linearity test of data converters often dominates the overall test cost of SoCs. This talk will present several recently developed techniques for reducing linearity test cost by dramatically reducing measurement time and dramatically relaxing instrumentation requirements.
The IEEE standard for ADC linearity test requires the stimulus signal to be at least 10 times more accurate than the ADC under test. To relax this stringent requirement, the SEIR (stimulus error identification and removal) algorithm is developed to accurately test high-resolution ADCs using nonlinear stimuli. It has been demonstrated by industries that more than 16 bits of ADC test accuracy were achieved using 7-bit linear ramps instead of 20-bit linear ramps as required by IEEE, a relaxation of well over 1000 times on the instrumentation accuracy requirement.
The biggest contributor to test cost is the long measurement time. The recently developed uSMILE (ultrafast Segmented Model Identification for Linearity Errors) algorithm can dramatically reduce the measurement time needed for ADC linearity test. With a system identification approach using a segmented model for the integral nonlinearity, the algorithm can reduce the test time by a factor of over 100 and still achieve test accuracies superior to the standard histogram test method. This method has been extensively validated by industry and has been adopted for production test for multiple product families.
By combining the salient features of both SEIR and uSMILE, the ultrafast stimulus error removal and segmented model identification of linearity errors (USER- SMILE) algorithm is developed. The USER-SMILE algorithm uses two nonlinear signals as input to the ADC under test. One signal is shifted by a constant voltage with respect to the other nonlinear signal. By subtracting the two sets of output codes, input signal is canceled and the nonlinearity of ADC, modeled by a segmented non-parametric INL model, will be identified with the least square method.
A completely on-chip ADC BIST circuit is developed based on the USER-SMILE algorithm and demonstrated on a 28nm CMOS automotive microcontroller. The ADC test subsystem includes a nonlinear DAC as signal generator, a built-in voltage shift generator, a BIST computation engine, and dedicated memory cells. The silicon measurement results show accurate test results. The INL test results are further used to correct ADC linearity errors, thus providing a method for reliably calibrating the ADC. Measurement results demonstrated that the BIST-based calibration method achieved >10dB THD/SFDR improvements over the existing calibration method used by industry.