Expert Series Human Response to Vibration Measurement and Assessment of Risk Marco Tarabini Human Response to Vibration Measurement and Assessment of Risk × Abstract Vibration exposure affects workers’ health: epidemiological studies showed several adverse effects, including musculoskeletal, vascular, and neurological disorders resulting from prolonged exposure to hand- arm vibration (HAV), whole-body vibration (WBV), and foot-transmitted vibration (FTV). This course presents biomechanical parameters used to describe the human response to vibration, alongside the experimental setups for their study. Measurement principles for the quantification and assessment of the risk are presented and discussed. Keywords: Comfort; Hand-Arm Vibration; Whole-Body Vibration; Foot-Transmitted Vibration; Occupational Health View the Full Video Tutorial
Expert Series Optical Biosensors for Point-of-Care Test (POCT) devices Francesco Arcadio Optical Biosensors for Point-of-Care Test (POCT) devices × Abstract Point-of-Care Test (POCT) devices enable decentralized, rapid, and accurate diagnostics, supporting applications in different fields, such as medical diagnostics, environmental monitoring, and food safety. One of the strict requirements for POCT devices lies into the ability to monitor different analytes by keeping the measurement setup unchanged. In addition to this, another important criterion in POCT development relies into the possibility to sweep different concentration ranges, thus being able to tailor the detection range to the specific application of interest. This tutorial will present an innovative POCT device which includes an optical probe based on the so-called surface plasmon resonance (SPR) phenomenon and plastic optical fibers (POFs) to develop groundbreaking solutions to be used in several biochemical sensing scenarios. In particular, by monitoring the change in resonance wavelength due to the analyte/receptor binding, the developed device has the capability to automatically acquire the data and send it to an external server for further processing. The POCT device versatility has been demonstrated by several applications ranging from environmental monitoring to healthcare and industrial applications. Keywords: Optical fiber sensors; optical biosensors; surface plasmon resonance (SPR); plastic optical fibers (POFs); point-of-care tests (POCTs) View Video Tutorial Here
Expert Series A Gentle Introduction to DOE (Intro) Jean-Marie Fürbringer A Gentle Introduction to DOE (Intro) × Abstract Design of experiments (DOE) is an approach to experimental work that aims to produce the best predictions in the most economical way. The world is noisy and multifactorial. Experiments are necessary to assess reality. But experiments can have a high cost in terms of time, delay and resources. A trade-off between costs and benefits of the experimental campaign must be done. Based on statistics, DOE offers tools for academic and industrial research. It ensures that the quality of the data is adequate to answer the experimenter’s questions. The presentation shows with two examples how DOE is implemented and the type of insight it can bring. Keywords: Design of experiments, fractional factorial design, Plackett-Burman design, experimental variance, empirical modeling, factor interactions View Full Video Tutorial
Expert Series How Information Theory Helps Sensing Design Marco Tartagni How Information Theory Helps Sensing Design × Abstract Information Theory (IT) originated in the realm of telecommunications, focusing on channel optimization and encoding. In recent decades, IT has been applied to understanding fundamental concepts in various other fields such as cognitive neuroscience, biology, and dimensionality reduction in machine learning. This short video will present how IT can help us understand fundamental aspects of measurement, such as resolution and signal chain optimization. I will also demonstrate how some results can lead to practical applications, such as the optimal choice of quantization resolution in A/D conversion for a noisy interface. The goal is for this framework to simplify design challenges in more complex contexts. Keywords: Information theory; Theory of measurement; Analog-to-digital conversion; Signal chain optimization; Sensor design View Video Tutorial Here
Expert Series Measurements Applications for Autonomous Systems (Intro) Daniele Fontanelli Measurements Applications for Autonomous Systems (Intro) × Abstract Autonomous systems are nowadays having an undisputed pervasiveness in the modern society. Autonomous driving cars as well as applications of service robots (e.g. cleaning robots, companion robots, intelligent healthcare solutions, tour guided systems) are becoming more and more popular and a general acceptance is now developing around such systems in the modern societies. Nonetheless, one of the major problems in building such applications relies on the capability of autonomous systems to understand their surroundings and then plan proper counteractions. The most popular solutions, which are gaining more and more attention, rely on artificial intelligence and deep learning as a means to understand the structured and complex natural environment. Nonetheless, besides the importance of such complex tools, classical concept of metrology, such as uncertainty and precision, are still unavoidable to a clear and effective application of modern autonomous systems applications. In this tutorial, some measurement concepts will be revised in light of the autonomous systems domain. In particular, we will cover the main concepts of the statistical approach to measurements that will then be applied to: Uncertainty analysis and synthesis for autonomous systems localisation Precision-based feedback for social robotics Keywords: electrical, capacitance, tomography, ieee, ims, wuqiang yang, tutorials, education, applications View Video Tutorial Here
Expert Series Medicine 4.0: AI and IoT, the New Revolution Eros Pasero Medicine 4.0: AI and IoT, the New Revolution × Abstract Medicine 4.0 is definitely a great revolution in patient care. New horizons are possible today. Relocation of services, which means remote monitoring, and remote diagnoses without direct contact between the doctor and the patient. Hospitals are freed from routine tests that could be performed by patients at home and reported by doctors on the internet. Telemedicine is not a WhatsApp where an elder tries to chat with a doctor. Telemedicine is a complete remote medical center connected to smart devices able to measure objective vital parameters. Medicine 4.0 requires new technologies for smart sensors, but also Artificial Intelligence is required to perform smart analysis using these smart sensors. A.I. is used both to manage intensive care rooms and to perform better and faster analyses. In this webinar, we’ll see how to use Machine learning techniques to improve ECG analyses and leg ulcer treatment. Keywords: Telemedicine, Artificial Intelligence, Artificial Neural Networks, Electronic Health, Smart Sensors View the Full Video Tutorial
Expert Series Measurements for Smart(er) Grids Mihaela Albu Measurements for Smart(er) Grids × Abstract The video is addressing the general topic of measurements in emerging power systems. Firstly, disruptive changes in electric power systems are analyzed in order to understand the impact on the requirements for control and instrumentation in smart grids; then modern measurement chains are presented together with their potential use in coping with limited knowledge on the grid infrastructure, new power quality issues generated by distributed generation or wide area measurement and control in low inertial systems. Ways of merging the information delivered by existing (SCADA, intelligent electronic devices ) and emerging (Phasor measurement units -PMUs and microPMUs) measurement systems are presented, as part of applications like the power system state estimation; The tutorial highlights the importance of assessment the measurement channel quality together with the silently adopted models for energy transfer, and issues like voltage and frequency variability; rate of change of frequency; the steady-state signal and rapid voltage changes; measurement data aggregation; filtering properties; time- aggregation algorithms in the PQ framework. The presentation ends with new applications enabled by smart metering with high reporting rate (1s) and highlights some of the challenges for measurement systems in smart grids. Keywords: smart grids; active distribution grids; smart metering; high reporting rate measurements; unbundled smart meter View Video Tutorial Here